470 research outputs found

    Deciphering Protein–Protein Interactions. Part II. Computational Methods to Predict Protein and Domain Interaction Partners

    Get PDF
    Recent advances in high-throughput experimental methods for the identification of protein interactions have resulted in a large amount of diverse data that are somewhat incomplete and contradictory. As valuable as they are, such experimental approaches studying protein interactomes have certain limitations that can be complemented by the computational methods for predicting protein interactions. In this review we describe different approaches to predict protein interaction partners as well as highlight recent achievements in the prediction of specific domains mediating protein-protein interactions. We discuss the applicability of computational methods to different types of prediction problems and point out limitations common to all of them

    Knowledge-based annotation of small molecule binding sites in proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The study of protein-small molecule interactions is vital for understanding protein function and for practical applications in drug discovery. To benefit from the rapidly increasing structural data, it is essential to improve the tools that enable large scale binding site prediction with greater emphasis on their biological validity.</p> <p>Results</p> <p>We have developed a new method for the annotation of protein-small molecule binding sites, using inference by homology, which allows us to extend annotation onto protein sequences without experimental data available. To ensure biological relevance of binding sites, our method clusters similar binding sites found in homologous protein structures based on their sequence and structure conservation. Binding sites which appear evolutionarily conserved among non-redundant sets of homologous proteins are given higher priority. After binding sites are clustered, position specific score matrices (PSSMs) are constructed from the corresponding binding site alignments. Together with other measures, the PSSMs are subsequently used to rank binding sites to assess how well they match the query and to better gauge their biological relevance. The method also facilitates a succinct and informative representation of observed and inferred binding sites from homologs with known three-dimensional structures, thereby providing the means to analyze conservation and diversity of binding modes. Furthermore, the chemical properties of small molecules bound to the inferred binding sites can be used as a starting point in small molecule virtual screening. The method was validated by comparison to other binding site prediction methods and to a collection of manually curated binding site annotations. We show that our method achieves a sensitivity of 72% at predicting biologically relevant binding sites and can accurately discriminate those sites that bind biological small molecules from non-biological ones.</p> <p>Conclusions</p> <p>A new algorithm has been developed to predict binding sites with high accuracy in terms of their biological validity. It also provides a common platform for function prediction, knowledge-based docking and for small molecule virtual screening. The method can be applied even for a query sequence without structure. The method is available at <url>http://www.ncbi.nlm.nih.gov/Structure/ibis/ibis.cgi</url>.</p

    ComSin: database of protein structures in bound (complex) and unbound (single) states in relation to their intrinsic disorder

    Get PDF
    Most of the proteins in a cell assemble into complexes to carry out their function. In this work, we have created a new database (named ComSin) of protein structures in bound (complex) and unbound (single) states to provide a researcher with exhaustive information on structures of the same or homologous proteins in bound and unbound states. From the complete Protein Data Bank (PDB), we selected 24 910 pairs of protein structures in bound and unbound states, and identified regions of intrinsic disorder. For 2448 pairs, the proteins in bound and unbound states are identical, while 7129 pairs have sequence identity 90% or larger. The developed server enables one to search for proteins in bound and unbound states with several options including sequence similarity between the corresponding proteins in bound and unbound states, and validation of interaction interfaces of protein complexes. Besides that, through our web server, one can obtain necessary information for studying disorder-to-order and order-to-disorder transitions upon complex formation, and analyze structural differences between proteins in bound and unbound states. The database is available at http://antares.protres.ru/comsin/

    Spin-Resolved Topology and Partial Axion Angles in Three-Dimensional Insulators

    Full text link
    Topological insulating (TI) phases were originally highlighted for their disorder-robust bulk responses, such as the quantized Hall conductivity of 2D Chern insulators. With the discovery of time-reversal- (T\mathcal{T}-) invariant 2D TIs, and the recognition that their spin Hall conductivity is generically non-quantized, focus has since shifted to boundary states as signatures of 2D and 3D TIs and symmetry-enforced topological crystalline insulators (TCIs). However, in T\mathcal{T}-invariant (helical) 3D TCIs such as bismuth, α\alpha-BiBr, and MoTe2_2-termed higher-order TCIs (HOTIs)-the boundary signatures manifest as 1D hinge states, whose configurations are dependent on sample details, and bulk signatures remain unknown. In this work, we introduce nested spin-resolved Wilson loops and layer constructions as tools to characterize the bulk topological properties of spinful 3D insulators. We discover that helical HOTIs realize one of three spin-resolved phases with distinct responses that are quantitatively robust to large deformations of the bulk spin-orbital texture: 3D quantum spin Hall insulators (QSHIs), "spin-Weyl" semimetal states with gapless spin spectra, and T\mathcal{T}-doubled axion insulator (T-DAXI) states with nontrivial partial axion angles Ξ±=π\theta^\pm = \pi indicative of a 3D spin-magnetoelectric bulk response. We provide experimental signatures of each spin-stable regime of helical HOTIs, including an extensive bulk spin Hall response in 3D QSHIs and half-quantized 2D TI states on the gapped surfaces of T-DAXIs originating from a partial parity anomaly. We use ab-initio calculations to compute the spin-resolved topology of candidate helical HOTIs, finding that ÎČ\beta-MoTe2_2 realizes a spin-Weyl state and that α\alpha-BiBr hosts both 3D QSHI and T-DAXI regimes.Comment: v2: 19+141 pages, 8+44 figures. Expanded materials analysis, added detailed calculations of spin-resolved topology and spin Hall conductivity with applications to BiBr. 1 author added for help with additional analyses. Nested and spin-resolved Wilson loop code with example scripts and documentation freely available at https://github.com/kuansenlin/nested_and_spin_resolved_Wilson_loo

    Inferred Biomolecular Interaction Server—a web server to analyze and predict protein interacting partners and binding sites

    Get PDF
    IBIS is the NCBI Inferred Biomolecular Interaction Server. This server organizes, analyzes and predicts interaction partners and locations of binding sites in proteins. IBIS provides annotations for different types of binding partners (protein, chemical, nucleic acid and peptides), and facilitates the mapping of a comprehensive biomolecular interaction network for a given protein query. IBIS reports interactions observed in experimentally determined structural complexes of a given protein, and at the same time IBIS infers binding sites/interacting partners by inspecting protein complexes formed by homologous proteins. Similar binding sites are clustered together based on their sequence and structure conservation. To emphasize biologically relevant binding sites, several algorithms are used for verification in terms of evolutionary conservation, biological importance of binding partners, size and stability of interfaces, as well as evidence from the published literature. IBIS is updated regularly and is freely accessible via http://www.ncbi.nlm.nih.gov/Structure/ibis/ibis.html

    An overview of the PubChem BioAssay resource

    Get PDF
    The PubChem BioAssay database (http://pubchem.ncbi.nlm.nih.gov) is a public repository for biological activities of small molecules and small interfering RNAs (siRNAs) hosted by the US National Institutes of Health (NIH). It archives experimental descriptions of assays and biological test results and makes the information freely accessible to the public. A PubChem BioAssay data entry includes an assay description, a summary and detailed test results. Each assay record is linked to the molecular target, whenever possible, and is cross-referenced to other National Center for Biotechnology Information (NCBI) database records. ‘Related BioAssays’ are identified by examining the assay target relationship and activity profile of commonly tested compounds. A key goal of PubChem BioAssay is to make the biological activity information easily accessible through the NCBI information retrieval system-Entrez, and various web-based PubChem services. An integrated suite of data analysis tools are available to optimize the utility of the chemical structure and biological activity information within PubChem, enabling researchers to aggregate, compare and analyze biological test results contributed by multiple organizations. In this work, we describe the PubChem BioAssay database, including data model, bioassay deposition and utilities that PubChem provides for searching, downloading and analyzing the biological activity information contained therein

    CDD: a Conserved Domain Database for protein classification

    Get PDF
    The Conserved Domain Database (CDD) is the protein classification component of NCBI's Entrez query and retrieval system. CDD is linked to other Entrez databases such as Proteins, Taxonomy and PubMed¼, and can be accessed at http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=cdd. CD-Search, which is available at http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi, is a fast, interactive tool to identify conserved domains in new protein sequences. CD-Search results for protein sequences in Entrez are pre-computed to provide links between proteins and domain models, and computational annotation visible upon request. Protein–protein queries submitted to NCBI's BLAST search service at http://www.ncbi.nlm.nih.gov/BLAST are scanned for the presence of conserved domains by default. While CDD started out as essentially a mirror of publicly available domain alignment collections, such as SMART, Pfam and COG, we have continued an effort to update, and in some cases replace these models with domain hierarchies curated at the NCBI. Here, we report on the progress of the curation effort and associated improvements in the functionality of the CDD information retrieval system

    Testing gravitational-wave searches with numerical relativity waveforms: Results from the first Numerical INJection Analysis (NINJA) project

    Get PDF
    The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave data analysis communities. The purpose of NINJA is to study the sensitivity of existing gravitational-wave search algorithms using numerically generated waveforms and to foster closer collaboration between the numerical relativity and data analysis communities. We describe the results of the first NINJA analysis which focused on gravitational waveforms from binary black hole coalescence. Ten numerical relativity groups contributed numerical data which were used to generate a set of gravitational-wave signals. These signals were injected into a simulated data set, designed to mimic the response of the Initial LIGO and Virgo gravitational-wave detectors. Nine groups analysed this data using search and parameter-estimation pipelines. Matched filter algorithms, un-modelled-burst searches and Bayesian parameter-estimation and model-selection algorithms were applied to the data. We report the efficiency of these search methods in detecting the numerical waveforms and measuring their parameters. We describe preliminary comparisons between the different search methods and suggest improvements for future NINJA analyses.Comment: 56 pages, 25 figures; various clarifications; accepted to CQ
    • 

    corecore